

Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	1/12	B-00

LED SPECIFICATION

PART NO.: EOS-RGB603A00

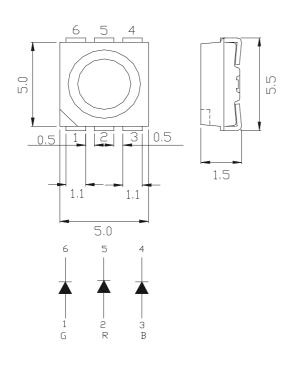
PART DESCRIPTION:

Full Color Top LED

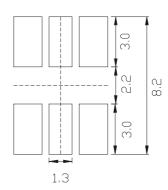
(Red, Green, Blue Color)

EOI			CUSTOMER APPROVED
ACTION	NAME	DATE	
PREPARED	Seggy Liang	2006/4/21	
CHECKED	Cathy Huang	2006/4/21	
APPROVED	Ader Wu	2006/4/21	

Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	2/12	B-00

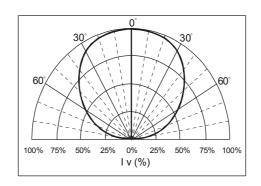

Features

- ♦ Super-luminosity chip LED
- ◆ PLCC-6 SMT Package
- ♦ Built-in Red, Green, and Blue chip
- ♦ Good heat dissipation
- ◆ Pb free & RoHS compliant product
- ◆ Class 1 ESD sensitive


Applications

- ♦ Flashlight for digital camera of cellular
- ◆ Information boards
- ◆ Amusement equipment
- ♦ Full color application
- ♦ General Use

Package Dimension


Recommended soldering pad

Note:

- All dimensions are in millimeter.
- Tolerance is ±0.20mm unless otherwise note.
- Specifications are subject to be changed without notice.

Beam Pattern

Spec No.	Date	Page	Ver.	
A-TS-023-00	2006/4/21	3/12	B-00	

Absolute Maximum Ratings at T_A=25°C

Parameter	Symbol		Unit		
Tarameter	Symbol	Red	Green	Blue	
Average Forward Current ^{[a] [c]}	$I_{\mathbf{F}}$	30	20	20	mA
Peak Forward Current ^[b]	I peak	100	50	50	mA
Reverse Voltage	V_R	5	5	5	V
Power Dissipation	P _D	82.5	91	91	mW
Current Linearity vs. Ambient Temperature	TCI	-0.33	-0.29	-0.29	$mA/^{\circ}C$
LED Junction Temperature	T_{J}	125	125	125	$^{\circ}\!\mathbb{C}$
Operating Temperature Range ^[c]	T OPR	-40°C ∼+85°C			
Storage Temperature Range	T _{STO}	-40°C ∼+100°C			
Lead Soldering Condition [4mm(.157") away from epoxy]	T sol	260°C / 5 seconds			

Note: [a] Design of heat dissipation should be considered.

[b] tp \leq 10 μ s, Duty Cycle=0.005.

[c] The allowable operating current at different operation temperature, please take reference from Fig. 4 page 4.

Electrical and Optical Characteristics at T_A =25°C

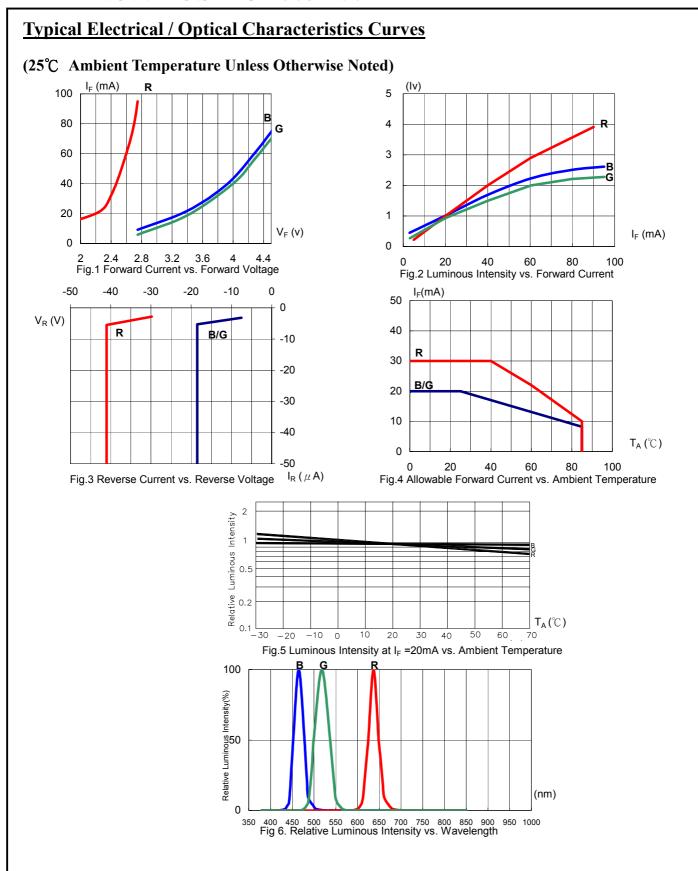
Parameter	Symbol	Color	Min.	Тур.	Max.	Unit	Test Condition
		Red	140	270	560		
Luminous Intensity	Iv	Green	450	690	1125	mcd	$I_F=20mA$
		Blue	90	180	355		
		Red		120			
Viewing Angle	$2 heta_{1/2}$	Green		120		deg	I _F =20mA
		Blue		120			
		Red	620	623	635		I _F =20mA
Dominant Wavelength	λd	Green	520	525	536	nm	
		Blue	464	470	480		
		Red		25		nm	I _F =20mA
Spectral Half width	$\triangle \lambda$	Green		25			
		Blue		25			
		Red	1.25	2.2	2.75		
Forward Voltage	V_{F}	Green	3.05	3.4	4.55	V	$I_F=20mA$
		Blue	3.05	3.4	4.55		
		Red			10		
Reverse Current	I_R	Green			10	$\mu \mathbf{A}$	$V_R=5V$
		Blue			10		▼ R−3 ▼

Spec No.	Date	Page	Ver.	
A-TS-023-00	2006/4/21	4/12	B-00	

Rank Combinations

-	Dominant V	T avelength	Luminous	Intensity	Forward	Voltage
CODE	λd	(nm)	Iv(ı	ncd)	Vf	(v)
	Min	Max	Min	Max	Min	Max
	520	536	450	715	3.05	4.55
001	620	635	140	224	1.25	2.75
001	464	480	90	140	3.05	4.55
	520	536	715	1125	3.05	4.55
002	620	635	140	224	1.25	2.75
	464	480	90	140	3.05	4.55
	520	536	450	715	3.05	4.55
003	620	635	224	355	1.25	2.75
	464	480	90	140	3.05	4.55
	520	536	450	715	3.05	4.55
004	620	635	224	355	1.25	2.75
	464	480	90	140	3.05	4.55
	520	536	450	715	3.05	4.55
005	620	635	355	560	1.25	2.75
	464	480	90	140	3.05	4.55
	520	536	450	715	3.05	4.55
006	620	635	355	560	1.25	2.75
	464	480	90	140	3.05	4.55
	520	536	450	715	3.05	4.55
007	620	635	140	224	1.25	2.75
	464	480	140	224	3.05	4.55
	520	536	715	1125	3.05	4.55
800	620	635	140	224	1.25	2.75
	464	480	140	224	3.05	4.55
	520	536	450	715	3.05	4.55
009	620	635	224	355	1.25	2.75
	464	480	140	224	3.05	4.55

	Dominant V	avelength	Luminous	Intensity	Forward	Voltage
CODE	λdo	(nm)	Iv(ı	mcd)	Vf	(v)
	Min	Max	Min	Max	Min	Max
	520	536	450	715	3.05	4.55
010	620	635	224	355	1. 25	2.75
010	464	480	140	224	3.05	4.55
	520	536	450	715	3.05	4.55
011	620	635	355	560	1. 25	2.75
	464	480	140	224	3.05	4.55
	520	536	450	715	3.05	4.55
012	620	635	355	560	1. 25	2.75
	464	480	140	224	3.05	4.55
	520	536	450	715	3.05	4.55
013	620	635	140	224	1. 25	2.75
	464	480	224	355	3.05	4.55
	520	536	715	1125	3.05	4.55
014	620	635	140	224	1.25	2.75
	464	480	224	355	3.05	4.55
	520	536	450	715	3.05	4.55
015	620	635	224	355	1. 25	2.75
	464	480	224	355	3.05	4.55
	520	536	450	715	3.05	4.55
016	620	635	224	355	1. 25	2.75
	464	480	224	355	3.05	4.55
	520	536	450	715	3.05	4.55
017	620	635	355	560	1.25	2.75
	464	480	224	355	3.05	4.55
	520	536	450	715	3.05	4.55
018	620	635	355	560	1. 25	2.75
	464	480	224	355	3.05	4.55


Note:

- 1.All of rank combinations which include luminous intensity, dominant wavelength, and forward voltage will be included in every shipment.
- 2. Measurement Uncertainty of the Luminous Intensity: ±15%.
- 3. Measurement Uncertainty of the Dominant Wavelength: ±1nm.
- 4. Measurement Uncertainty of the Voltage: ±0.05V.

 Spec No.
 Date
 Page
 Ver.

 A-TS-023-00
 2006/4/21
 5/12
 B-00

Note: The data shown above are typical curves. Every LED component may have some variations of characteristics.

Spec No.	Date	Page	Ver.	
A-TS-023-00	2006/4/21	6/12	B-00	

Reliability Test

EOI'S LED components are checked by reliability test based on MIL standards.

1. Test Conditions, Acceptable Criteria & Results:

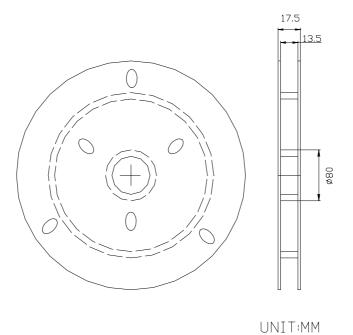
Classifi-	Test Item	Standard Test Method	Test Conditions	Duration	Unit	Acc/Rej	Result
cation						Criteria	
Life Test		MIL-STD-750D	T _A =25°C; I _F =30mA*	1000hrs	50pcs	0/1	pass
		Method 1026.3			•		'
	High Temperature Storage	MIL-STD-750D	T _A =100°C	1000hrs	50pcs	0/1	pass
	Otorage	Method 1032.1		10001113	оороз	0/1	pacc
	Low Temperature	MIL-STD-750D	T _A =-40°C	1000hrs	50pcs	0/1	nace
est	Storage	Method 1032.1		10001115	Supes	0/ 1	pass
lent 7	Temp&Humidity	MIL-STD-750D	T _A =85℃; Rh=85%	40001	50	0/4	
Environment Test	with Bias	Method 103B	10 I _F =20mA	1000hrs	50pcs	0/1	pass
Env	Thermal Shock	MIL-STD-750D	-10°C (1min)		20cycles 50pcs	0/1	
		Method 1056.1	~100℃(1min)	20cycles 100°C (1min)			pass
	Temperature	MIL-STD-750D	-40°C (30min)~25°C (5min)				
	Cycling Test	g Test	~100 °C (30min)~25 °C (5min)	100cycles	50pcs	0/1	pass
Test	Solderability	MIL-STD-750D	235 <u>+</u> 5°C;3sec	1tim o	50pos	0/1	naca
ical -		Method 2026.4		1time	50pcs	0/1	pass
Mechanical Test		MIL-STD-750D	260°C;5sec	44.	50	0/4	
Me	Soldering Heat	Method 2031.1		1time	50pcs	0/1	pass

Remark : (*) $I_F = 30$ mA for AllnGaP chip ; $I_F = 20$ mA for InGaN chip

2. Failure Criteria ($T_A = 25^{\circ}C$):

Test Item		Test Conditions	Criteria for Judgment			
		rest Conditions	Min.	Max.		
Luminous Intensity	I _V	I _F =20 mA	LSL×0.5 **			
Voltage (Forward)	V _F	I _F =20 mA		USL×1.1 *		

(*) USL : Upper Standard Level , (**) LSL : Lower Standard Level



Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	7/12	B-00

Taping Dimension 8 ± 0.1 2±0.05 4 ± 0.1 12±0.2

- 1.Polarity referring onto the cathode mark/line is reversed on the UR/HR(N-side up chips). 2.The carrier tape and components loading specifications meet the EIA 481-1a Standard. 3.2,500 pieces per reel is standard loading quantity.

Reel Dimension

Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	8/12	B-00

Precaution of Application

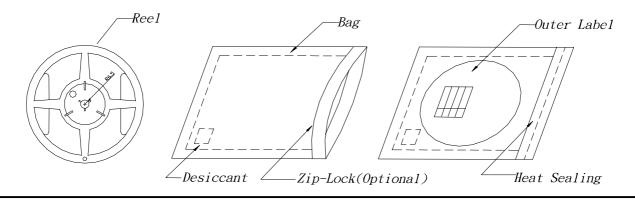
1. Circuit layout

Due to the forward voltage of LED will vary with temperature and its driving current, the current-limited protective circuit should be considered in the LED circuit design.

When LEDs are arrayed as parallel circuit, different inherent resistance of LED will cause unbalance current. The unbalanced driving current which exists in every parallel circuit may make LED to be drived at different power. Therefore, the LED driven at higher power may be damaged by over driving current, and the LED driven at lower power may be dimmer than the others.

To solve this situation, a suitable resistor is recommended to put in series with each LED circuit. The resistor will limit and balance the driving current which flow through every parallel circuits.

2. Electric Static Discharge (ESD) Protection


ESD protection for GaP and AlGaAs chips are still necessary even though they are safety in low static-electric discharge. Material in AllnGaP, GaN, or/and InGaN chips are STATIC SENSITIVE device. ESD protection shall be considered and taken in the initial design stage.

If manual work/process is needed, please ensure the device is well protected from ESD within all the process.

3: Dry Pack

This SMD type optical device, is a MOISTURE SENSITIVE device. Please avoid absorbing moisture at any time during transportation or storage. Every reel will be packaged in the moisture barrier anti-static bag to protect LED from the damage caused from moisture and static-electricity. And the bag is well sealed before shipment.

The package is the following:

Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	9/12	B-00

4: Cautions of Pick and Place

- (a) It should be avoided to load stress on the resin during high temperature.
- (b) Avoid rubbing or scraping the resin by any object.
- (c) Electric-static may cause damage to the component. Please confirm that the equipment is grounding well.
- (d) Every piece of LED will be sorted and LEDs with the same binning grade will be taped into the same reel or put into the same bag. It is recommended to use the same bin-grade LED to assembly the unit module. This will ensure the LED unit module with good uniformity of brightness, hue, and so on.

5: Storage

It's recommended to store the products in the following conditions:

Humidity (Hum.): 60%RH Max.

Temperature (T_A): 5° C ~ 30° C (41° F ~ 86° F)

Shelf life in sealed bag: 12 month at $T_A < 25^{\circ}C \sim 30^{\circ}C$ and Hum. $< 30^{\circ}RH$.

After the package is opened, the products should be used within 72 hours.

Or they should be kept at Hum. ≤20%RH in zip-locked sealed bags.

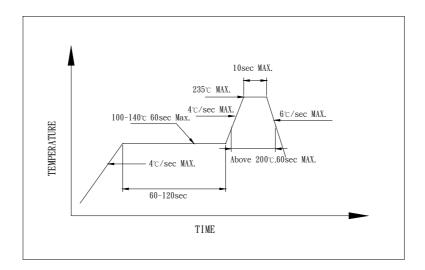
Devices should be subjected to soldering process as soon as possible, after the bag is opened. This will protect LED from the damage of moisture and the corrosion of pads or leads.

Please avoid rapid transitions in ambient temperature, especially in high humidity environment where condensation can occur.

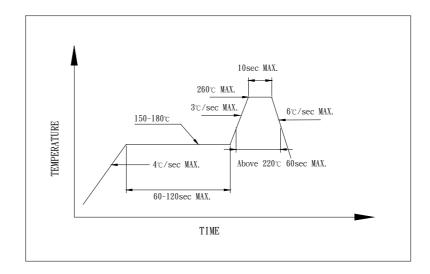
6: Baking

It's recommended to bake before soldering . The conditions are suggested as followings:

- (1) $60\pm3^{\circ}$ C ×(6~12hrs) and <5%RH, taped reel type
- (2) $100\pm3^{\circ}C \times (45\text{min}\sim1\text{hrs})$, bulk type



Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	10/12	B-00


7: Reflow Soldering

To prevent cracking in reflow process, please bake this SMD components before reflow soldering. Never take next process until the component is cooled down to room temperature after reflow. It's banned to load any stress on the resin during soldering. And, the manual soldering process is not recommended for quality consideration.

Recommended SnPb reflow soldering profile:

Recommended Pb free reflow soldering profile:

Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	11/12	B-00

8: Cleaning

The conditions of cleaning after soldering:

An alcohol-based solvent such as isopropyl alcohol (IPA) is recommended.

Temperatures Time: <50°C ×30sec, or <30°C ×3min

Ultra sonic cleaning: <15W/bath; Bath volume: 1 liter max.

Baking after cleaning: 100°C max, <3min

9: Rework

- (a) Please finish rework within 5 sec. under 245°C.
- (b) Please avoid overheating of LED component in reworking process. Overheating may damage the LED package.

Spec No.	Date	Page	Ver.
A-TS-023-00	2006/4/21	12/12	B-00

Terms and Condition

- 1. EOI warrants all sold LEDs which conform to the specifications approved by the customers.
- 2. Any LED supplied by EOI is found not conform to the specifications that both parties agreed upon, customer should claim within 90days of receipt. EOI will repair or replace the LEDs at EOI's option.
- 3. EOI will not hold any responsibility for the failed LEDs, which are caused by mishandling or misusing the LEDs exceeding the operating conditions that EOI suggested.
- 4. EOI's LED products are designed and manufactured for general electronic equipment (such as household appliances, communication equipment, office equipment, electronic instrumentation and so on). If customer's application requires exceptional quality or reliability, which might concern human safety, it is recommended to consult with EOI in advance.
- 5. All the information published is considered to be reliable. However, EOI does not assume any liability arising out of the application or use of any product described herein. EOI's liability for defective LED lamps shall only be limited to replacement, in no event shall EOI be liable for consequential damages or loss.
- 6. EOI and customer shall both confirm the specifications herein, and all quality related matters will base on the specifications both parties agreed upon.
- 7. Any modification of the design or manufacturing process taken place, which will affect the characteristics, performance or reliability of LED, customer's approval will be required.
- 8. This specification approval sheet is an agreement of shipment specification. Please sign it back and keep the copies in two parties. If customers don't sign it back, it is regarded as completely agree with the terms and conditions and also approve of this approval sheet.

Company Information

Headquarters

5F, No. 1, Creation Road II, Hsinchu Science Park, HsinChu, Taiwan 300, R.O.C.

TEL: 886-3-5679000 FAX: 886-3-5679999

http://www.eoi.com.tw E-mail: Service@eoi.com.tw

U.S. Office

1400 W. Lambert Road, Suite B, Brea CA92821

TEL: 1-562-694-1246, 1-562-694-1427

FAX: 1-562-691-3087

http://www.eoi-us.com E-mail: Sales@eoius.com