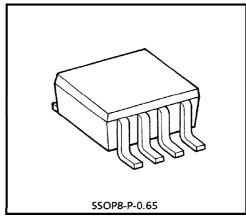
TOSHIBA CMOS DIGITAL INTEGRATED CIRCUIT SILICON MONOLITHIC

T C 3 W 0 3 F U


CRYSTAL OSCILLATOR

The TC3W03FU is a IC for high speed CMOS crystal oscillator fabricated with silicon gate C²MOS technology. It can be used to make high efficient crystal oscillator with certain output signal by added external crystal oscillation unit, some capacitor and resistor.

It has selective 4-step (f_0 , $1/2f_0$, $1/4f_0$, $1/8f_0$) frequency devide down function.

And by setting the disable oscillate input (CE) to low level, the output (Q) becomes high impedance.

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

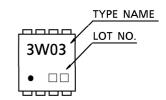
Weight: 0.02g (Typ.)

FEATURES

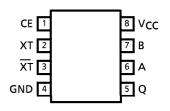
- Wide oscillation frequency range ··· fosc = 1MHz~40MHz
- Incorporated frequency devide down step

··· selective f₀, 1/2f₀, 1/4f₀ or 1/8f₀

- 3-state output
- Output drive capability ··· 10 LSTTL loads
- Very small package


MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage Range	Vcc	-0.5~7.0	V
DC Input Voltage	VIN	-0.5~V _{CC} +0.5	V
DC Output Voltage	Vout	-0.5~V _{CC} + 0.5	V
Input Diode Current	IN	± 20	mA
Output Diode Current	IOUT	± 25	mA
Power Dissipation	PC	300	mW
Storage Temperature	T _{stg}	- 65∼150	°C
Lead Temperature (10s)	TL	260	°C


(Note)

This IC is used only for crystal oscillation. So, this is unfit for DC~low frequency range operation and frequency devide down.

MARKING

PIN ASSIGNMENT (TOP VIEW)

TRUTH TABLE

INPUTS			OUTPUTS
CE	Α	Q	
н	L	L	fo
	L	Н	1/2f ₀
	Н	L	1 / 4f ₀
	Н Н		1/8f ₀
L	Don't	care	Z

Z : High impedance

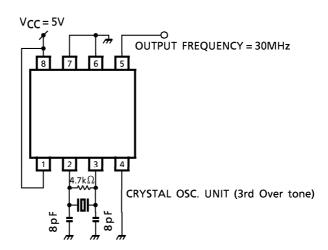
PIN DESIGNATIONS

PIN NO.	SYMBOL	FUNCTION
1	CE	Disable oscillate and Reset
2	XT	Connect to crystal unit dvide down step.
3	XT	Connect to crystal unit dvide down step.
4	GND	Ground
5	Q	Output
6	Α	Select for devide down ratio
7	В	Select for devide down ratio
8	Vcc	Supply voltage

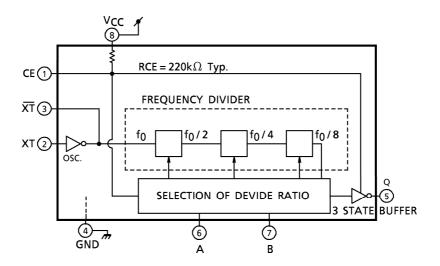
RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	VCC	5 ± 0.5	٧
Input Voltage	V _{IN}	0~V _{CC}	٧
Operating Temperature	T _{opr}	- 45∼85	°C

DC ELECTRICAL CHARACTERISTICS

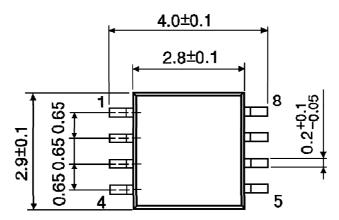

PARAMETER		TEST	TEST CONDITION	Ta = 25°C			Ta = − 40~85°C		
PARAIVIETER	3 TIVIBOL	CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	MIN.	MAX.	UNIT
High-Level Input Voltage	V _{IH}	_	V _{CC} = 5V	3.5	_	_	3.5	_	V
Low-Level Input Voltage	V _{IL}	_	V _{CC} = 5V	_	_	1.5	_	1.5	V
High-Level Output Current	IOH	_	V _{CC} = 5V	- 4.0	_	_	- 3.8	_	mA
Low-Level Output Current	lOL	_	V _{CC} = 5V	4.0	_	_	3.8	_	mA
High-Level Input Current	lін	_	$CE = A = B = V_{CC}$	_	_	0.1	_	1.0	μ A
Low-Level Input Current	կլ	_	A = B = GND	_	-	- 0.1	_	- 1.0	μ A
Quiescent Supply Current	lcc	_	$CE = V_{CC}$, $A = B = GND$	_		1.0	_	10	μ A
Stand by Current	^I STN	_	CE = GND	_	_	500	_	700	μ A
3-State Output Off-State	loz		$A = B = V_{IH}$ or V_{IL}			±0.5		± 5.0	μΑ
Current	102		$V_{OUT} = V_{CC}$ or GND			- 0.5		- 5.0	μ
Builtin Pull-up Resistor	R _{CE}	_		154	220	286	154	286	$\mathbf{k}\Omega$

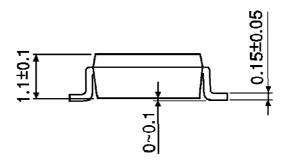
AC ELECTRICAL CHARACTERISTICS ($V_{CC} = 5V$, Ta = 25°C)


PARAMETER	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC (opr)}	_	See application circuit	_	_	22	mΑ
Operating Frequeny Range	f _{opr}	_	See application circuit	1.0	_	40	MHz
Output Wave form Duty	Duty	_	See application circuit	45	50	55	%

2 2001-05-31

APPLICATION CIRCUIT (Example)


SYSTEM DIAGRAM



3 2001-05-31

PACKAGE DIMENSIONS

SSOP8-P-0.65 Unit: mm

Weight: 0.02g (Typ.)

4 2001-05-31

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- ◆ The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.