

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	1/11	B-00

LED SPECIFICATION

PART NO.: EOL-K1YCCC0-DG

PART DESCRIPTION:

5 Ø 15° Yellow LED Lamp

	EOI		CUSTOMER APPROVED
ACTION	NAME	DATE	
PREPARED	Cathy Huang	2005/4/29	
CHECKED	Amy Lin	2005/4/29	
APPROVED	Ader Wu	2005/4/29	

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	2/11	B-00

Features

Standard T-1 3/4 Package

High brightness AlGaInP LED

UV Resistant Epoxy

Pb free & RoHS Compliant Product

Applications

Indoor/Outdoor Applications

Indicator

Vehicle Tail Light

Variable Message Signs

Center High Mount Stop Light

Warning Light

Package Dimension

Notes:

- 1.All dimensions are in millimeters.
- 2. Tolerance is ±0.20mm unless otherwise noted.
- 3. Protruded resin under flange is 1.5mm max.
- 4.Lead spacing is measured where the leads emerge from the package.

Lens Color	Beam Color	Lead Frame Material	Stand Off	Flange
Clear Water	Yellow	Iron base	No	Yes

Beam Pattern

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	3/11	B-00

Absolute Maximum Ratings at T_A=25

Parameter	MAX.	Unit
Power Dissipation	72	mW
Peak Forward Current ^[a] (I _{FP})	100	mA
DC Forward Current ^[b] (I _F)	30	mA
Current Linearity vs. Ambient Temperature	- 0.5	mA/
Reverse Voltage (V _R)	5	V
LED Junction Temperature	125	
Operating Temperature Range ^[c]	-40 to +85	
Storage Temperature Range	-40 to +100)
Lead Soldering Condition [4mm(.157") away from epoxy]	260±5 for 5 Se	conds

Note: [a] Duty Ratio=1/10, Pulse Width=0.1ms.

[b] Design of heat dissipation should be considered.

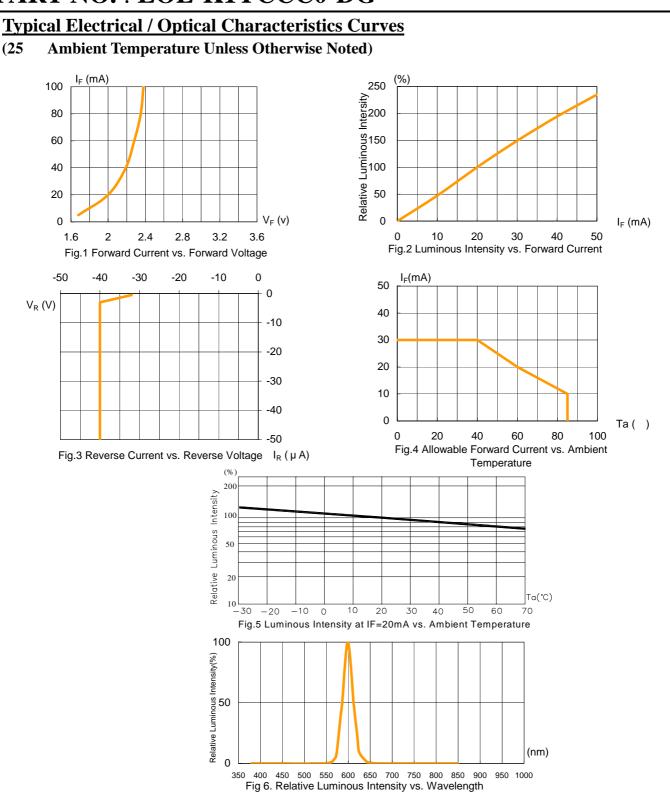
[c] The allowable operating current see page 4 Fig 4.

Electrical and Optical Characteristics at $T_A = 25$

Parameter	Symbol	Min.	Тур.	Max.	Unit	Test Condition
Luminous Intensity	Iv	2225	4200		mcd	$I_F=20mA$
Viewing Angle	2 1/2		15		Deg	$I_F=20mA$
Dominant Wavelength	d		589		nm	$I_F=20mA$
Spectra Half width			25		nm	$I_F=20mA$
Forward Voltage	$V_{\rm F}$		2.0	2.4	V	I _F =20mA
Reverse Current	I_R			10	μΑ	V _R =5V

Ranks Combination

Dominant Wavelength λ_D (nm) @I _F =20mA				ninous Intenced) @I _F =2	•	Forward Voltage V _F (v) @I _F =20mA		
Code	min	max	Code	min	max	Code	min	max
Y3	585	589	0 U	2225	3115	G	1.8	2.0
Y4	589	592	0V	3115	4360	Н	2.0	2.2
Y5	592	595	0W	4360	6105	J	2.2	2.4
-	-	-	_	-	-	-	-	_


Note:

- 1. All ranks of total luminous Intensity will be included in every shipment.
- 2. Measurement Uncertainty of the Luminous Intensity: ±15%
- 3. Measurement Uncertainty of the Dominant Wavelength: ±1nm
- 4. Measurement Uncertainty of the Voltage: ±0.05V

 Spec No.
 Date
 Page
 Ver.

 A-L-260-00
 2005/4/29
 4/11
 B-00

*Note: The data shown above are typical curves. Every LED component may have some variations of characteristics.

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	5/11	B-00

Reliability Criteria & Results

EOI'S LED lamps are checked by reliability test based on MIL standards.

1. Test Conditions, Accept Criteria & Results:

Classi-	Test Item	Standard	Test Conditions	Duration	Units	Acc/Rej
fication	Test Item	Test Method	rest Conditions	Duration	Tested	Criteria
Life Test	Operating Life Test (OLT)	MIL-STD-750D Method 1026.3	Ta=25 ; I_F =30m $A^{(*)}$	1000hrs	100 pcs	0/1
	High Temperature Storage (HTS)	MIL-STD-750D Method 1032.1	Ta=100	1000hrs	100 pcs	0/1
Test	Low Temperature Storage (LTS)	MIL-STD-750D Method 1032.1	Ta= -40	1000hrs	100 pcs	0/1
Environment Test	Temp. & Humidity with Bias (THB)	MIL-STD-750D Method 103B	Ta=85 ; Rh=85% ; I_F =20mA (**)	500hrs	100 pcs	0/1
Envi	Thermal Shock Test (TST)	MIL-STD-750D Method 1056.1	0 ~ 100 2min 2 min	100 cycles	100 pcs	0/1
	Temperature Cycling Test (TCT)	MIL-STD-750D Method 1051.5	-40 ~ 25 ~ 100 ~ 25 30min 5min 30min 5min	100 cycles	100	0/1
Test	Solderability	MIL-STD-750D Method 2026.4	235±5 ; 5sec	1 time	20 pcs	0/1
Mechanical Test	Resistance to Soldering Heat	MIL-STD-750D Method 2031.1	260±5 ; 10sec	1 time	20 pcs	0/1
Mec	Lead Integrity	MIL-STD-750D Method 2036.3	Load 2.5N (0.25kgf) 0° ~90° ~ 0° bend	3 times	20 pcs	0/1

Remark:

(*) $I_F\ = 30\ mA$ for AlInGaP chip ; $\ I_F\ = 20\ mA$ for InGaN chip

(**) $I_F = 20 \text{ mA}$ for AlInGaP chip; $I_F = 10 \text{ mA}$ for InGaN chip

2. Failure Criteria (Ta =25):

Test Item	Symbol	Test Conditions	Criteria for	Judgement
Test Item	Symbol Test Conditions		Min.	Max.
Luminous Intensity	I_{V}	$I_F = 20 \text{mA}$	LSL×0.7**	
Voltage (Forward)	V_{F}	$I_F = 20 \text{mA}$		USL × 1.1*

* USL : Upper Standard Level

* *LSL : Low Standard Level

PCS/OUTER BOX

>7.5mm

3.0/4.0/5.0mm:20,000pcs

: 8,000pcs

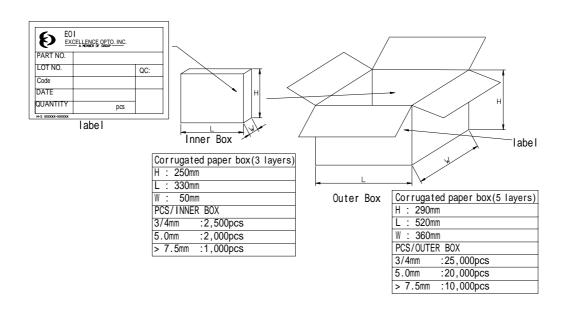
PART NO.: EOL-K1YCCC0-DG

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	6/11	B-00

label

Outer Box

Bulk Package EOI EXCELLENCE OPTO. INC. PART NO. LOT NO. QC: Code DATE QUANTITY label Anti-static/anti-corrosion bag H : 200mm L : 180mm PCS/BAG 3.0/4.0/5.0mm:1,000pcs >7.5mm 400pcs Bag Corrugated paper box(3 layers) H : 140mm L : 350mm W : 260mm PCS/INNER BOX 3.0/4.0/5.0mm:10,000pcs Inner Box >7.5mm : 4,000pcs Corrugated paper box(5 layers) H : 320mm L : 380mm W : 280mm


Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	7/11	B-00

(Tape & Reel, Ammo Pack are available)

(Maximum 10 inner boxes in one outer box)

ITEM	SYMBOL	SPECIFICATION			
		MINIMUM		MAXIMUM	
		MM	INCH	MM	INCH
Tape Feed Hole Diameter	D	3.8	0.149	4.2	0.165
Component Lead Pitch	F	2.34	0.092	2.74	0.108
Front To Rear Deflection	h			2.0	0.078
Feed Hole To Bottom Of Component	H1	19.0	0.709	21.0	0.787
Feed Hole To Overall Component Height	H2			32.00	1.260
Lead Length After Component Height	L	W0		11.0	0.433
Feed Hole Pitch	P	12.4	0.488	13.0	0.511
Lead Location	P1	4.4	0.173	5.8	0.228
Center Of Component Location	P2	5.05	0.198	7.65	0.301
Total Tape Thickness	T			1.4	0.056
Feed Hole Location	W0	8.5	0.334	9.50	0.374
Adhesive Tape Width	W1	12.0	0.472	14.0	0.551
Adhewive Tape Position	W2			4.0	0.157
Tape Width	W3	17.5	0.689	19.0	0.748

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	8/11	B-00

Precaution of Application

1. Circuit layout

Due to the circuit design is not available, assuming the LED are used in parallel and one resistor that is put in series in the circuit, it may not provide and effective current-limiting function to the LEDs due to each LED has own inherent resistance, maybe the resistance each other is different. Different inherent resistance will cause different current; the LED on the different path would be driven at different power. If one LED with a higher resistance, it would be dimmer than the others.

To solve this situation, a suitable resistor is put in series with each LED to limit her current disparity through the LED will be very useful.

2. Electric Static Discharge (ESD) Protection

ESD protection for GaP and AlGaAs chips are still necessary even though they are safety in low static-electric discharge. Material in AllnGaP, GaN, or/and InGaN chips are STATIC SENSITIVE device. ESD protection shall be considered and taken in the initial design stage.

If manual work/process is needed, please ensure the device is well protective from ESD within all the process.

3. Lead Froming

The leads should not be bent at the point of 3mm or above from the base of the epoxy bulb while forming the leads.

Do not apply any bending stress to the base of the lead, and don't cause any stress after mounting the LED lamp on PCB. The stress to the base may damage the LED's characteristics, or cause deterioration of the epoxy resin. This will hurt and degrade the LEDs.

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	9/11	B-00

4. Storage

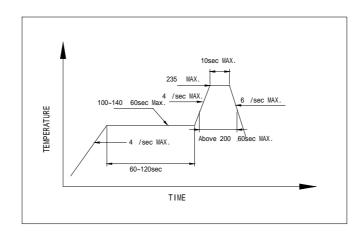
It's recommended to store the products in the following conditions:

Humidity: 60%RH Max.

Temperature:5 ~ 30 (41 ~ 86)

Shelf life in sealed bag: 12month at<40 and <30%RH.(Base on aluminum laminated moisture barrier bag.) If the LEDs are stored for 3 months or more, the nitrogen atmosphere storage environment is recommended.

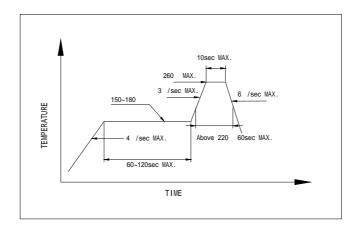
Although the leads of LED lamp is platted with pure tin to protect leads from corrosion, devices should be subjected to wave soldering, or equivalent process as soon as possible, after the bag is opened.


Please avoid rapid transitions in ambient temperature, especially in high humidity environment where condensation can occur.

5. Soldering

Soldering heat may damage the LED. Careful attention should be paid during soldering process.

Solder the LEDs no close than 3mm form the base of the epoxy bulb.


Recommended SnPb reflow soldering profile:

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	10/11	B-00

Recommended Pb free reflow soldering profile:

Never take next process until the component is cooled down to room temperature after soldering. It's banned to load any stress on the resin during soldering. If it's necessary to clamp the LED bulbs to help soldering, it is important to minimize the mechanical stress on the LEDs.

The manual soldering process is not recommended for quality consideration. When it is absolutely necessary, the LEDs may be mounted in this fashion but the user will assume responsibility for any problems.

6. Cleaning

An alcohol-based solvent such as isopropyl alcohol (IPA) is recommended to clean the LED bulbs, after soldering process. Before cleaning, a pre-test should be done to confirm whether any damage to the LEDs will occur.

7. Others

The light output of LED might injure human eyes, directly look at the LED without protection is prohibited.

LED lamp is very sensitive to heat. Thermal design of the end product will decide the performance of LED lamps. It's necessary to avoid intense heat generation and operate within the maximum ratings given in this specification.

Spec No.	Date	Page	Ver.
A-L-260-00	2005/4/29	11/11	B-00

Terms and Condition

- 1. EOI warrants all sold LEDs which conform to the specifications approved by the customers.
- 2. Any LED supplied by EOI is found not conform to the specifications that both parties agreed upon, customer should claim within 90days of receipt. EOI will repair or replace the LEDs at EOI's option.
- 3. EOI will not hold any responsibility for the failed LEDs, which cause by mishandling or using the LEDs exceeding the operating conditions that EOI suggested.
- 4. EOI's LED products are designed and manufactured for general electronic equipment (such as household appliances, communication equipment, office equipment, electronic instrumentation and so on). If customer's application requires exceptional quality or reliability, which might concern human safety, it is recommended to consult with EOI in advance.
- 5. All the information published is considered to be reliable. However, EOI does not assume any liability arising out of the application or use of any product described herein. EOI's liability for defective LED lamps shall only be limited to replacement, in no event shall EOI be liable for consequential damages or profit lose.
- 6. EOI and customer shall both confirm the specifications herein, and all quality related matters will base on the specifications both parties agreed upon.
- 7. Any modification of the design or manufacturing process take place will affect the characteristics, performance or reliability. A customer's approval is required.
- 8. This specification approval sheet is an agreement of shipment specification. Please sign it back and keep the copies in two parties. If customers don't sign it back, it is regarded as complete approve of this approval sheet.

Company Information

Head Quarter

8F, No.10, LI-HSING ROAD, SCIENCE-BASED INDUSTRAL PARK, HSIN-CHU, TAIWAN, R.O.C

TEL: 886-3-5679000 FAX: 886-3-5679999 http://www.eoi.com.tw E-mail: sales@eoi.com.tw

US Office

1400 W. Lambert Road, Suite #B, Brea CA 92821

TEL:(562) 694-1246, (562) 694-1427

FAX:(562) 691-3087

Sales Team: sales@eoius.com