

Spec No.	Date	Page	Ver.
Z-008-00	2004/7/16	1/7	A-00

Super Flux LED

PART NO. : EOZ-ZBRHCD0-TK

Product Description

Super Flux LEDs are made with super high brightness LED chips and low thermal resistance package. The low thermal resistance package allows the lighting designers to drive these LEDs at higher current than the conventional through-hole LEDs. The advanced AlGaInP technology from UEC provides extremely high and stable light output over long period of time. With UEC's GB Chips, Super Flux LEDs can generate the same level of optical performance as it is by Lumileds' TS grade Piranha. Because Super Flux LED can emit more light, uniform and unique illuminated appearance, as it allows the lighting designer to reduce the number of LEDs required through the efficient optical design and high-current electrical design.

Excellence opto-electrical Inc. uses the brightest Red, Amber, Blue, and Green LED chips in this product family. The designers can select the most suitable color for many lighting applications, such as automobile signals, garden lightings, special lightings for building and electronic signs, and etc.

EXCELLENCE OPTO. INC.					
APPROVED	REVIEWED	PREPARED			
Jimmy Tsai	Ader Mu	Cathy Huang			
	CUSTOMER				
APPROVED	REVIEWED	PREPARED			

Features


- ♦ High Luminance
- ◆ Low Thermal Resistance
- ♦ Low Profile
- Meet SAE/ECE/JIS Automotive Color Requirements
- ◆ Design for High Current Operation

Benefits

• Fewer LED Requirement

• Lower Application Cost

Outline Drawings

Applications

Automotive Exterior Lighting

Spec No.

Date

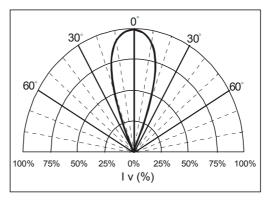
Z-008-00 2004/7/16

Page

2/7

Ver.

A-00


- Electronic Signs and Signals
- ♦ Specialty Lighting

Notes:

1.All dimensions are in millimeters.

- 2. Tolerance is ± 0.20 mm unless otherwise noted.
- 3.Protruded resin under bottom surface of epoxy is 1.5mm max.
- 4.Lead spacing is measured where the leads emerge from the package.

Beam Pattern

 Spec No.
 Date
 Page
 Ver.

 Z-008-00
 2004/7/16
 3/7
 A-00

Absolute Maximum Ratings at T_A=25°C

Parameter	MAX.	Unit
DC Forward Current ^[a] (I _F)	70	mA
Power Dissipation	224	mW
Reverse Voltage (V _r)	10	V
LED Junction Temperature	125	°C
Operating Temperature Range ^[b]	-40 to + 85	°C
Storage Temperature Range	-40 to +100	°C
Lead Soldering Condition [4mm(.157") away from epoxy]	260±5°C for 5 \$	Seconds

Note: [1] Design of heat dissipation should be considered.

[2]The allowable operating current at different operation temperature, please take reference from Fig 4 page 4.

Parameter Symbo		Min.	Тур.	Max.	Unit	Test Condition
Total Luminous Flux Φv		2000	2500		mlm	I _F =70mA
Viewing Angle	$2 heta_{1/2}$		40		Deg	I _F =70mA
Dominant Wavelength	λd	619	623	630	nm	I _F =70mA
Spectra Half width	Δλ		25		nm	I _F =70mA
Forward Voltage	V_{F}	2.4	2.7	3.2	V	I _F =70mA
Reverse Current	I _R			100	μΑ	V _R =10V
Thermal Resistance θj-a	200(Тур.)		°C/W	I _F =70mA		
Thermal Resistance θj-pin		125(Тур.)		°C/W	I _F =70mA	

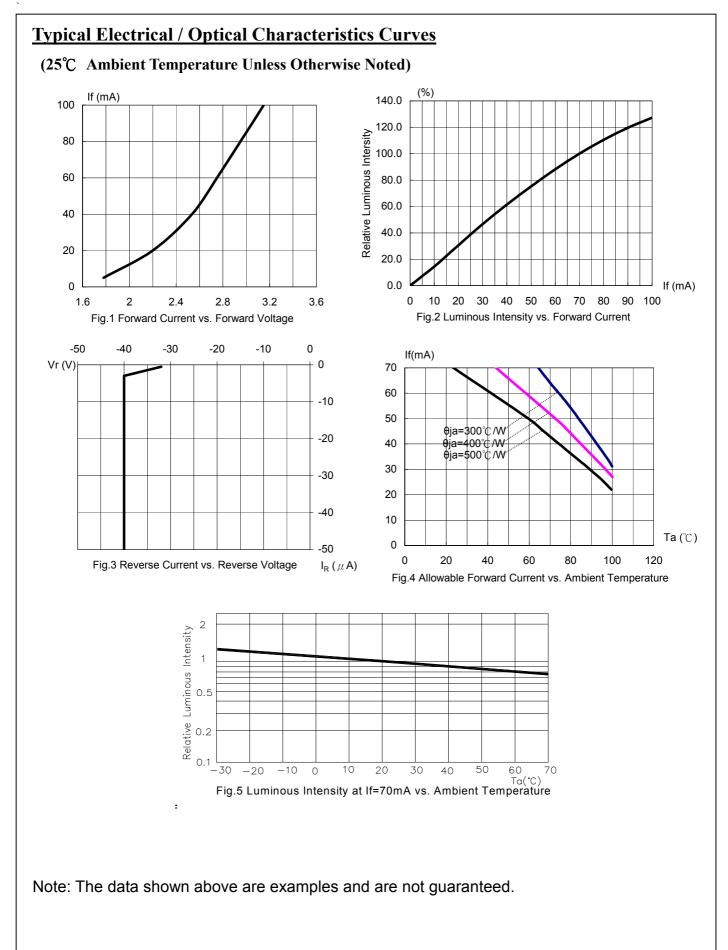
<u>Electrical and Optical Characteristics at $T_A = 25^{\circ}C$ </u>

Rank of flux	D	Е	F
Total Flux Φv (mlm) @ I _F = 70 mA	2000-2750	2750-3850	3850-5400

Note:

1. Viewing angle 0.9V is the include dangle at which 90% of total luminous flux is captured.

2.All ranks of total luminous flux will be included in every shipment.


3. Measurement Uncertainty of the Total flux: $\pm 15\%$

4. Measurement Uncertainty of the Dominant Wavelength: ±1nm

5. Measurement Uncertainty of the Voltage: ±0.05V

Spec No. Date Page Ver. Z-008-00 2004/7/16 4/7 A-00

Spec No.	Date	Page	Ver.
Z-008-00	2004/7/16	5/7	A-00

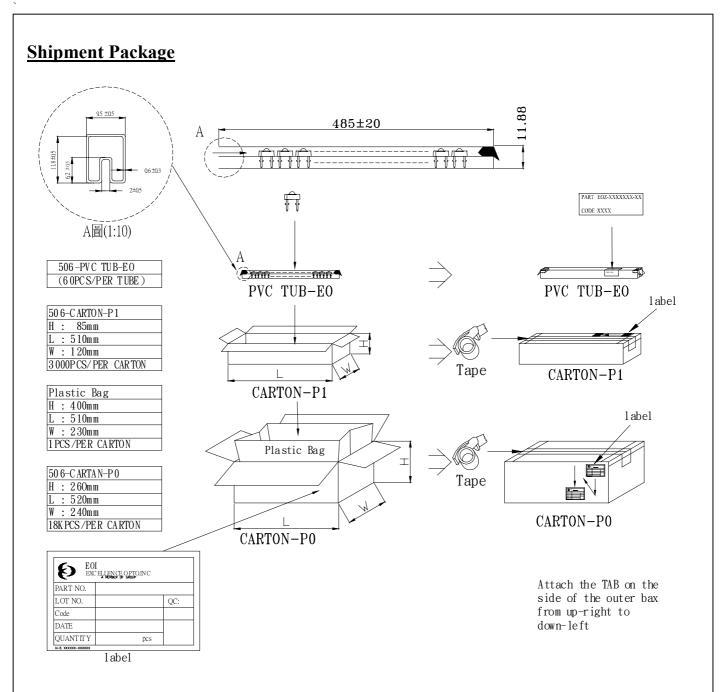
Reliability Criteria & Results

EOI'S LED Lamps passes the reliability test in compliance with on MIL standards.

1. Test Conditions, Accept Criteria & Results:

Classi-	Test Item	Standard	Test Conditions	Duration	Units	Acc/Rej	Number of
fication	Test Method	Test Conditions	Duration	Tested	Criteria	Damaged	
Life	Operating Life Test	MIL-STD-750D	$T_A=25^{\circ}C$, $I_F=70mA$	1000 hrs.	100	0 / 1	0/100
Test	(OLT)	Method 1026.3	$\Gamma_{\rm A}$ = 2.5 \odot / $\Gamma_{\rm F}$ = 70 mA	1000 IIIS.	100	0 / 1	0/100
	High Temperature	MIL-STD-750D	T _A =100°C	1000 hrs.	100	0 / 1	0/100
	Storage (HTS)	Method 1032.1	1 _A -100 C	1000 IIIS.	100	0 / 1	0/100
	Low Temperature	MIL-STD-750D	$T_A = -40^{\circ}C$	1000 hm	100	0.11	0/100
Test	Storage (LTS)	Method 1032.1	$1_{A} - 40 C$	1000 hrs.	100	0 / 1	0/100
nent	Temp. & Humidity	MIL-STD-750D	T _A =60°C , RH=90%	500 hm	100	0 / 1	0/100
uuo.	with Bias (THB)	Method 103B	I _F =45mA 500 hr		s. 100	0 / 1	0/100
Environment Test	Thermal Shock	MIL-STD-750D	$0^{\circ} \leftrightarrow 100^{\circ}C$	100	100	0 / 1	0/100
Ц	Test (TST)	Method 1056.1	2min 2min	cycles	100	0 / 1	0/100
	Temperature	MIL-STD-750D	-40°C∼25°C∼100°C∼25°C	100	100	0 / 1	0/100
	Cycling Test (TCT)	Method 1051.5	30min 5min 30min 5min	cycles	100		
		MIL-STD-750D	235±5℃,5 sec	1.0	20	0 / 1	0/30
Fest	Solderability	Method 2026.4	233±3 (, 5 sec	1 time	30	0 / 1	
cal	Resistance to	MIL-STD-750D	2(0±5°C - 10 and		•	0.11	0/20
Mechanical Test	Soldering Heat	Method 2031.1	$260\pm5^{\circ}$ C , 10 sec	1 time	30	0 / 1	0/30
Mec	T 1T / '/	MIL-STD-750D	Load 2.5N (0.25kgf)	3 times	30	0 / 1	0/30
	Lead Integrity	Method 2036.3	$0^{\circ} \sim 90^{\circ} \sim 0^{\circ}$, bend				

2. Reliability Criteria:


Item	Symbol	Test Conditions	Criteria for Judgement		
item	Symbol	Test Conditions	Min.	Max.	
Voltage (Forward)	V_{F}	$I_F = 70 \text{ mA}$	_	ULS×1.1 *	
Current (Reverse)	I _R	$V_R = 5 V$		ULS×2.0 *	
Luminous Intensity	I _V	I _F =70 mA	ITV×0.3 **		

* ULS : Upper Limit of Specification.

** ITV : Initial Test Value.

Spec No.	Date	Page	Ver.
Z-008-00	2004/7/16	6/7	A-00

Spec No.	Date	Page	Ver.
Z-008-00	2004/7/16	7/7	A-00

Cautions On LED Handling

- 1. The light output of LED might injure human eyes, directly look at the LED without protection is prohibited.
- 2. Static electricity will damage the LEDs. It is recommended to use a wrist band or anti-electrostatic glove while handling the LEDs.
- 3. The leads should be bent at the point from the base of the epoxy bulb while forming the leads.4.
- 4. LEDs may be damaged by heat caused by soldering process, please use suitable solder temperature to avoid heat damage.

Terms and Conditions

- 1. EOI warrants all sold LEDs which conform to the specifications approved by the customers.
- 2. Any LED supplied by EOI that does not conform to the specifications which both parties agreed upon, customer should claim within 90 days after receipt. EOI should repair or replace the LEDs at EOI's best effort.
- 3. EOI will not be responsible for any failed LEDs which was caused by mishandling or using the LEDs exceeding the operating conditions that EOI suggested.
- 4. EOI's LED products are designed and manufactured for general electronic equipment (such as household appliances, communication equipment, office equipment, electronic instrumentation and so on). If customer's application requires extra undocumented quality or reliability, which might concern human safety, it is recommended to consult with EOI in advance.
- 5. EOI's liability for defective LED lamps shall be limited to replacement, under no circumstance, shall EOI be liable for consequential damages or profit lose.
- 6. EOI and customer shall both confirm the specifications herein, and all quality related matters will base on comply with the specifications that both parties agreed upon.
- 7. Any modifications of the design or manufacturing process taken place will affect the characteristics, performance or reliability. Customer's approval is required.

The specification approval sheet requires signatures from both parties to become effective.